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Abstract. We describe an approach to construct hexahedral solid NURBS (Non-Uniform Ra-
tional B-Splines) meshes for patient-specific vascular geometric models from imaging data
for use in isogeometric analysis. First, image processing techniques, such as contrast enhance-
ment, filtering, classification, and segmentation, are used to improve the quality of the in-
put imaging data. Then, lumenal surfaces are extracted by isocontouring the preprocessed
data, followed by the extraction of vascular skeleton via Voronoi and Delaunay diagrams.
Next, the skeleton-based sweeping method is used to construct hexahedral control meshes.
Templates are designed for various branching configurations to decompose the geometry into
mapped meshable patches. Each patch is then meshed using one-to-one sweeping techniques,
and boundary vertices are projected to the lumenal surface. Finally, hexahedral solid NURBS
are constructed and used in isogeometric analysis of blood flow. Piecewise linear hexahedral
meshes can also be obtained using this approach. Examples of patient-specific arterial models
are presented.
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1 Introduction

Recently, patient-specific modeling was proposed as a new paradigm in simulation-
based medical planning. Physicians, using computational tools, construct and eval-
uate combined anatomical/physiological models to predict the outcome of alterna-
tive treatment plans for an individual patient. A comprehensive framework has been
developed to enable the conduct of computational vascular research [1, 2]. Blood
flow simulations provide physicians with physical data to help them devise treatment
plans.
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Fig. 1. The abdominal aorta model is divided into 26 patches, and each color represents one
different patch. (a) - volume rendering result; (b) - isocontouring result; (c) - surface model and
its path after removing unnecessary components; (d) - control mesh; (e) - solid NURBS mesh
after refinement (73,314 elements); (f) - fluid-structure interaction simulation results: contours
of the arterial wall velocity (cm/s) during late systole plotted on the current configuration. Only
major branches are kept in (d-f).
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Isogeometric analysis is a new computational technique that improves on and
generalizes the standard finite element method. It was first introduced in [3], and
expanded on in [4]. In an effort to instantiate the concept of isogeometric analy-
sis, an analysis framework based on NURBS was built. Mathematical theory of this
NURBS-based approach was put forth in [5]. NURBS is not the only possible ba-
sis for isogeometric analysis but it is certainly the most highly developed and widely
utilized. For an introductory text on NURBS, see Rogers [6]. A more advanced treat-
ment of the subject is given in Piegl and Tiller [7]. Other geometric modeling tech-
niques that have potential as a basis for isogeometric analysis include: A-patches [8],
T-splines [9], and subdivision [10]. These warrant further investigation.

Figure 1 shows one such model, obtained from patient-specific imaging data. We
have designed a set of procedures which allows us to create solid NURBS vascular
models directly from patient-specific data. We have named this process the vascular
modeling pipeline, which can be divided into four main steps:

1. Preprocessing – in scanned Computed Tomography (CT) or Magnetic Reso-
nance Imaging (MRI) data, the intensity contrast may not be clear enough, noise
exists, and sometimes the blood vessel boundary is blurred. Therefore, we use
image processing techniques to improve the quality of CT/MRI data, such as
contrast enhancement, filtering, classification, and segmentation.

2. Path Extraction – The goal is to find arterial pathes. Vascular surface models
can be constructed from the preprocessed imaging data via isocontouring. The
skeleton is then extracted from the surface model using Voronoi and Delaunay
diagrams. This skeletonization scheme is suitable for noisy input and creates
one-dimensional clean skeletons for blood vessels.

3. Control Mesh Construction – a skeleton-based sweeping method is developed
to construct hexahedral NURBS control meshes by sweeping a templated quad
mesh of a circle along the arterial path. Templates for various branching con-
figurations are presented which decompose the geometry into mapped meshable
patches using the extracted skeleton. Each patch can be meshed using one-to-
one sweeping techniques. Some nodes in the control mesh lie on the surface,
and some do not. We project nodes lying on the surface to the vascular sur-
face. The blood vessel wall can be built by radially extending the surface outside
10%-15% of the distance to the center line.

4. NURBS Construction and Isogeometric Analysis – after generating hexahedral
control meshes, we construct solid NURBS geometric models and employ isoge-
ometric analysis to simulate blood flow. Piecewise linear hex meshes can also be
obtained. Three numerical examples, coronary, thoracic and abdominal arteries,
are presented.

The remainder of this paper is organized as follows: Section 2 reviews related
previous work. Section 3 describes the meshing pipeline and preprocessing for our
geometric modeling approach. Section 4 talks about solid NURBS construction and
isogeometric analysis. Section 5 explains the skeleton-based sweeping method and
decomposition templates for various branching configurations. Section 6 presents
three numerical examples. Section 7 draws conclusions and outlines planned future
work.
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2 Previous Work

Sweeping Method: Sweeping, or 2 1
2 -D meshing, is one of the most robust tech-

niques to generate semi-structured hexahedral meshes. One-to-one sweeping re-
quires that the source and target surfaces have similar topology. The source surface
is meshed with quadrilaterals [11], which are swept through the volume using linking
surfaces as a guide [12].

However, few geometries satisfy the topological constraints required by one-to-
one sweeping. In the CUBIT project [13] at Sandia National Labs, a lot of research
has been done to automatically recognize features and decompose geometry into
mapped meshable areas or volumes. Various many-to-one and many-to-many sweep-
ing methods have been developed [14, 15, 16, 17]. Care should also be taken in
locating internal nodes during the sweeping process [18, 19].

Medial Axis-based Mesh Generation: Medial axis is the locus of points that
are minimally equidistant from at least two points on the geometry’s boundary. The
medial axis transform provides an alternative representation of geometric models
that has many useful properties for analysis modeling [20]. Applications include de-
composition of general solids into subregions for mapped meshing, identification
of slender regions for dimension reduction and recognition of small features for sup-
pression. The medial surface subdivision technique [21] decomposes the volume into
map-meshable regions, which are then filled with hex elements using templates.

Medial axis has been used to construct hexahedral meshes for CAD objects. The
skeleton-based modeling methods were developed for solid models [22]. Quadros et
al. used a skeleton technique to control finite element mesh size [23]. Besides other
unstructured mesh generation methods [24, 25, 26], a skeleton-based subdivision
method has also been used in biomedical applications, such as a below-knee residual
limb and external prosthetic socket [27], and bifurcation geometry in vascular flow
simulation [28]. However, trifurcations and more complex branchings also exist in
the human artery tree. Therefore, decomposition templates for arbitrary branching
configurations are desirable and are constructed in this paper.

NURBS in Mesh Generation and Analysis: As the most highly developed and
widely utilized technique, NURBS [6, 7, 29] has evolved into an essential tool for a
semi-analytical representation of geometric entities. Sometimes NURBS solid mod-
els are taken as input for finite element mesh generation [30]. Anderson et al. pro-
posed a fast generation of NURBS surfaces from polygonal mesh models of human
anatomy [31]. An enhanced algorithm was developed for NURBS evaluation and uti-
lization in grid generation [32]. In isogeometric analysis [3], NURBS basis functions
are used to construct the exact geometry, as well as the corresponding solution space.

3 Meshing Pipeline and Preprocessing

The input images are often of poor quality which makes it difficult to generate quality
meshes for regions of interest. To circumvent this problem we pass the raw imaging
data through a preprocessing pipeline where the image quality is improved by en-
hancing the contrast, filtering noise, classifying, and segmenting regions of various
materials. The surface model is then extracted from the processed imaging data, and
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Fig. 2. A schematic diagram of the meshing pipeline. Preprocessing includes three modules:
image processing, isocontouring and geometry editing, and path extraction.

the vessel path is obtained after skeletonizing the volume bounded by the surface.
First we modify the geometry by removing unnecessary components, then extract
the skeleton. The generated path can also be edited according to simulations, e.g.,
adding a path for a Left Ventricle Assist Device (LVAD) in the thoracic aorta model
(Figure 12). A skeleton-based sweeping method is then used to generate hexahedral
control meshes for solid NURBS construction and isogeometric analysis. Figure 2
shows the meshing pipeline. The preprocessing step of our skeleton-based meshing
approach is described below, including image processing, isocontouring and geome-
try editing, and path extraction.

Image Processing: We choose a fast localized method for image contrast en-
hancement [33]. The basic idea is to design an adaptive transfer function for each
individual voxel based on the intensities in a suitable local neighborhood. A bilateral
pre-filtering coupled with an evolution driven anisotropic geometric diffusion PDE
(partial differential equation) [34] is utilized to remove noise. Sometimes we need to
classify the voxels into several groups, each of which corresponds to a different type
of material. We choose an approach which relies on identification of the contours by
membership of seed points which are located by the gradient vector diffusion [35].
A variant of the fast marching method is adopted [36] to segment the imaging data
to find the clear boundary of each voxel group belonging to a certain category.

Isocontouring and Geometry Editing: There are two main isocontouring meth-
ods from imaging data: Primal Contouring (or Marching Cubes [37]) and Dual Con-
touring [38]. In this application we choose Dual Contouring to extract the isosurface,
because it tends to generate meshes with better aspect ratios. We then modify the
model to suit our particular application. This can be done in various ways, for ex-
ample, by removing unnecessary components, adding necessary components which
are not constructed from imaging data, denoising the surface, etc. After getting the
vessel path, we can edit it according to simulation requirements. For example, we
can add a path for the left ventricle assist device (LVAD) in the thoracic aorta model
(Figure 12).

Path Extraction: The vertex set of the extracted and possibly repaired geometry
is then used to create an interior path lying in the middle of the blood vessels. We
define a squared distance function which assigns to any point x ∈ R3, the minimum
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square distance to the vertex set. We further compute the index 1 and index 2 saddle
points of this distance function and compute the unstable manifold of these two types
of critical points. The identification of the critical points along with their indices and
the computation of the unstable manifold are done efficiently via the Voronoi and
its dual Delaunay diagram of the point set. The details of this method can be found
in [39]. We adopt this method of path generation because it has several advantages
which are useful for the patient specific modeling of blood vessels. One advantage
is that it can handle noisy input gracefully. Often the noise present in the data is
not fully eliminated after the preprocessing stage. In the path generation step we
employ another stage of filtering which helps to construct a clean skeletal path for the
extracted geometry. Secondly, the extracted geometry may have flat regions where
it is not straight forward to obtain a linear path. Fortunately our starring scheme, as
described in [39], eliminates these spurious features and create the one-dimensional
path. The results of this path generation step are shown on various datasets (Figures
1, 11, 12).

4 Solid NURBS Construction and Isogeometric Analysis

In a NURBS-based isogeometric analysis a physical domain in R3 is defined as a
union of patches. A patch, denoted by Ω, is an image under a NURBS mapping of a
parametric domain (0,1)3

Ω = {x = (x,y,z) ∈ R3 | x = F(ξ,η,ζ), 0 < ξ,η,ζ < 1}, (1)

where

F(ξ,η,ζ) =
n

∑
i=1

m

∑
j=1

l

∑
k=1

Rp,q,r
i, j,k (ξ,η,ζ)Ci, j,k, (2)

Rp,q,r
i, j,k =

Ni,p(ξ)M j,q(η)Lk,r(ζ)wi, j,k

∑n
î=1 ∑m

ĵ=1 ∑l
k̂=1

Nî,p(ξ)M ĵ,q(η)Lk̂,r(ζ)wî, ĵ,k̂

. (3)

In the above, Rp,q,r
i, j,k (ξ,η,ζ)’s are the rational basis functions, and Ci, j,k’s ∈ R3 are

the control points. In the definition of the rational basis, Ni,p(ξ)’s, M j,q(η)’s, and
Lk,r(ζ)’s, are the univariate B-spline basis functions of polynomial degree p, q, and
r; wi, j,k’s, strictly positive, are the weights.

In isogeometric analysis the geometry generation step involves construction of a
control mesh, which is a piecewise multi-linear interpolation of control points, and
the corresponding rational basis functions. The initial mesh encapsulates the ‘exact
geometry’ and, in fact, defines it parametrically.

For the purposes of analysis, the isoparametric concept is invoked (see Hughes
[40]). The basis for the solution space in the physical domain is defined through
a push forward of the rational basis functions defined in (2) (see [5] for details).
Coefficients of the basis functions, defining the solution fields in question (e.g., dis-
placement, velocity, etc.), are called control variables.

As a consequence of the parametric definition of the ‘exact’ geometry at the
coarsest level of discretization, mesh refinement can be performed automatically
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without further communication with the original description. This is an enormous
benefit. There are NURBS analogues of finite element h- and p-refinement, and there
is also a variant of p-refinement, which is termed k-refinement, in which the conti-
nuity of functions is systematically increased. This seems to have no analogue in
traditional finite element analysis but is a feature shared by some meshless methods.
For the details of the refinement algorithms see [3].

The isogeometric approach is fundamentally higher-order. For example, in order
to represent circles, cylinders and spheres, rational polynomials of at least quadratic
order are necessary. The generation of refined NURBS bases of all orders is fa-
cilitated by simple recursion relationships. The versatility and power of recursive
NURBS basis representations are truly remarkable. Equation systems generated by
NURBS tend to be more homogeneous than those generated by higher-order finite el-
ements and this may have some benefit in equation solving strategies. NURBS satisfy
a ‘variation diminishing’ property. For example, they give monotone fits to discontin-
uous control data and become smoother as order is increased, unlike Lagrange inter-
polation polynomials which oscillate more violently as order is increased. NURBS
of all orders are non-negative pointwise. This means that every entry of the NURBS
mass matrix is non-negative. These properties are not attained in finite element analy-
sis. On the other hand, NURBS are not interpolatory. They are fit to nets of control
points and control variables. This aspect is less transparent to deal with than the cor-
responding finite element concepts of interpolated nodal points and nodal variables
but somewhat similar to the situation for meshless methods. There are many robust
algorithms to create very complex geometries with NURBS.

5 The Skeleton-based Sweeping Method

Blood vessels are tubular objects, therefore we choose the sweeping method to con-
struct hexahedral control meshes for NURBS-based isogeometric analysis.

5.1 Sweeping Method

In the sweeping method, a templated quadrilateral mesh of a circle is projected onto
each cross-section of the tube, then corresponding vertices in adjacent cross-sections
are connected to form a hexahedral mesh. A hexahedral NURBS control mesh should
satisfy the following four requirements:

1. Any two cross-sections can not intersect with each other.
2. Each cross-section should be perpendicular to the path line.
3. In the intersection region of several branches, each cross-section should remain

perpendicular to the vessel surface.
4. In order to achieve a G1-continuous surface, the boundary vertex shared by two

patches in the control mesh should be collinear with its two neighbors along the
axial direction, and the boundary vertex shared by three or more patches should
be coplanar with all of its neighboring boundary vertices. This is because, for a
so-called open knot vector, a NURBS curve is tangent to the control polygon at
the first and the last control nodes.
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(a) (b) (c)

Fig. 3. Multi-resolution templates for cross-sections. (a) Level-1-template (9 control nodes);
(b) Level-2-template (17 control nodes); (c) Level-3-template (25 control nodes). Red points
are circle centers, green points are interpolatory control nodes on the circle, and blue points
are non-interpolatory control nodes defined as the intersection point of two tangent lines at its
two neighboring green points.

We choose to parameterize the template cross-section as follows. One parametric
direction is associated with a closed circular curve, while another parametric direc-
tion is associated with a radial coordinate. Rational quadratic basis is used to define
the circular curve with a control polygon given by the linear interpolation of the
green and blue points shown in Figure 3. For the template shown in Figure 3a, the
control polygon is a square consisting of 8 control nodes, while in Figure 3b, it is an
octagon. Note that the circular cross-section is unchanged geometrically and para-
metrically as more control points are chosen for its representation. The green control
points lie on the circle, while the blue control points do not. This is due to the fact
that the rational basis is interpolatory at the green points and is not interpolatory at
the blue points. Also note that each interpolatory control point has two neighbor-
ing non-interpolatory points that are collinear with it. This construction guarantees
the resultant circular curve to be G1-continuous. Later, when we discuss data fit-
ting, it is only the interpolatory points that get projected onto the true surface. The
non-interpolatory points are adjusted to preserve the collinearity in order to obtain a
G1-continuous cross-section.

In the process of sweeping, we translate the cross-section template to the selected
locations on the path, and rotate it to make its normal vector pointing in the direction
tangent to the path as shown in Figure 4. This gives the third parametric direction
for the solid NURBS representation. The hexahedral control mesh is constructed
by connecting the corresponding control nodes in adjacent cross-sections. Piecewise
linear hexahedral meshes can also be generated at the same time by projecting all
boundary vertices to the vessel surface, or by interpolating the elements of the solid
NURBS geometry.

5.2 Branching Templates

One-to-one sweeping requires that the source and target surfaces have similar topol-
ogy. Generally, arterial models do not satisfy this requirement, therefore we need to
decompose arterial networks into mapped meshable regions. In this section, we will
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Fig. 4. The skeleton-based sweeping method. (a) - a blood vessel skeleton; (b) - a templated
circle is translated and rotated to each cross-section. A bifurcation is shown.

discuss various decomposition templates for different branching configurations. An
n-branching is formed when n branches join together, where n≥ 3. When n = 3, it
is a bifurcation; when n = 4, it is a trifurcation; when n > 4, we call this situation
higher order branching.

In the human vascular system, most branchings are bifurcations. However, tri-
furcations or higher order branchings also exist. For example, there are several tri-
furcations in the coronary arteries (Figure 11) and the abdominal aorta (Figure 1).
In the following, we will discuss decomposition templates for all possible branching
configurations.

Bifurcation

For every intersection, a so-called master arterial branch is chosen. Typically, it is
an artery with the largest diameter. Suppose the master branch consists of two sub-
branches (Branch 1 and Branch 2), and the slave branch is Branch 3, as shown in
Figure 5a. The axes of Branch 1, 2 and 3 are Axis 1, 2 and 3 respectively (Axis 1
and Axis 2 may not be collinear). There is one basic case, shown in Figure 5, and all
bifurcations can be decomposed into three map-meshable regions by a variant of this
basic template.

Figure 5 shows the path, the constructed hexahedral control mesh, the solid
NURBS mesh, and the piecewise linear hexahedral meshes of the bifurcation tem-
plate. The bifurcation geometry is decomposed into three patches: the master branch
contains two patches (red and green), and the slave branch has one patch (yellow).
Here we choose Level-1-template (Figure 3a) for each cross-section, as the master
and slave branches have similar diameters. The bifurcation template also works for
finer cross-sections.

When the master branch and the slave branch have different diameters, the con-
trol nodes of some cross-sections are distributed unevenly in order to generate bet-
ter intersection regions. Figure 6 shows two control meshes and their corresponding
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Fig. 5. The bifurcation decomposition template. (a) - path; (b) - control mesh; (c) - solid
NURBS; (d) - a piecewise linear hex mesh. The bifurcation geometry is decomposed into 3
patches, and each patch is rendered with a different color.

solid NURBS meshes. The master branch control polygon is deformed from a square
to a trapezoid so as to accommodate a slave branch with a smaller diameter. Note that
the NURBS basis changes accordingly so as to preserve the circular cross-section,
and the quality of the intersection geometry is improved as can be seen in Figure 6
and Figure 7, where the axes of the master and the slave branches are non-orthogonal,
or non-coplanar. Although deforming the control polygon of the master branch gives
better results as compared to the non-deformed case, for the intersection of branches
with high diameter ratios we advocate the use of a finer template for the master
branch, such as a Level-2-template or a Level-3-template.

Fig. 6. Comparison of two meshes for the situation when the master branch and the slave
branch have different diameters. Control nodes on cross-sections are distributed evenly in
Mesh (1) (the top row), and unevenly in Mesh (2) (the bottom row). The red curves in the
right two pictures are transition curves.
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Fig. 7. Control mesh and solid NURBS (a) - the axes of the master and slave branches are not
perpendicular to each other; Control mesh and solid NURBS (b) - the axes of the master and
slave branches are not coplanar.

Trifurcation

Trifurcation has one master branch and two slave branches. According to the position
of slave branches relative to the master branch, we classify all possible trifurcations
to fall into five irreducible cases. All other trifurcations can be decomposed into
map-meshable regions by extending the five basic decomposition templates.

Case 1: The two slave branches are distributed along the peripheral direction of
the master branch, and they are in opposite relative to the master branch (the angle
between them is around 180◦). The same cross-section template can be used for the
master and slave branches.

Case 2: The two slave branches are distributed along the peripheral direction,
and the angle between them is arbitrary. Finer cross-section template is chosen for
the master branch.

Case 3: The two slave branches are distributed along the axial direction of the
master branch, and they intersect with each other.

Case 4: The two slave branches are distributed along the axial direction of the
master branch, and they do not intersect with each other. This situation degenerates
into two bifurcations.

Case 5: The two slave branches do not intersect with the master branch at the
same point, but they intersect with each other. In this situation, two bifurcations
merge into one trifurcation.

If a Level-1-template is selected as the cross-section of the master branch, then
there are at most two slave branches along the peripheral direction as shown in Fig-
ure 8 (Case 1). If the two slave branches are not opposite relative to the master
branch, or the two slave branches have different diameters from the master branch,
then a Level-1-template is not suitable, and we need to choose finer cross-section
templates, such as a Level-2-template or a Level-3-template. Similarly, if a Level-2-
template is selected as the cross-section of the master branch, then there can be at
most four slave branches along the peripheral direction. A Level-3-template allows
at most eight slave branches along the peripheral direction. In Case 2 of Figure 8,
the two slave branches are distributed along the peripheral direction and they are not
opposite, therefore we choose the finer cross-section template for the master branch
(Level-2-template), while the slave branch may have coarser cross-sections (Level-
1-template).

Case 3 and Case 4 have the same path, but Case 4 degenerates into two bifurca-
tions because its two slave branches do not intersect with each other even though their
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Trifurcation Case 1

Trifurcation Case 2

Trifurcation Case 3

Trifurcation Case 4

Trifurcation Case 5

Fig. 8. The trifurcation decomposition templates of Case 1-4. (a) - path; (b) - hex control mesh;
(c) - solid NURBS; (d) - piecewise linear hex mesh. The Trifurcation geometry is decomposed
into 4 patches (Case 1, 2, 3, 5) or 5 patches (Case 4). Each patch is rendered with a different
color.
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axes intersect. There is another special situation (Case 5) where two slave branches
do not intersect with the master branch at the same intersection point in the skeleton,
but the two intersection points are very close and the two slave branches intersect
with each other. This situation contains two bifurcations in the skeleton, but it should
be considered as one trifurcation. Therefore, when we choose branching configura-
tions, both the path and the vessel size should be considered.

Remark: In n-branching, n should be decided not only by the path, but also
by the diameter of each slave branch. In other words, if neighboring slave branches
intersect with each other, then it is n-branching. Otherwise, it degenerates into several
m-branchings, where m < n. On the other hand, several m-branchings may merge into
one n-branching if its slave branchings intersect with each other.

Here we discuss three basic templates for n-branching when n > 4. Relative to the
master branch, there are only two directions to arrange slave branches, the peripheral
and axial directions of the master branch. All other n-branching configurations can
be obtained by combining the three basic ones.

Case 1: There are three or more slave branches distributed along the peripheral
direction of the master branch. Figure 9 shows one example of four slave branches
along the peripheral direction. Level-2-template is selected for the master branch.
If there are more than four slave branches, the master branch needs to have a finer
cross-section. The cross-section template of slave branches can be coarser.

Case 2: There are three or more slave branches distributed along the axial direc-
tion of the master branch. Neighboring slave branches intersect with each other.

Case 3: There are three or more slave branches distributed along the axial di-
rection of the master branch. Slave branches do not intersect with each other. n-
branching degenerates into several m-branchings (m < n).

Several lower order branchings may merge into a higher order one, for example,
one bifurcation and one trifurcation can merge into a 5-branching. Case 1, Case 2
and Case 3 can be combined together to form more complex configurations. Figure
9 shows one example of 7-branching. It has four slave branches along the peripheral
direction and two slave branches along the axis of the master branch.

5.3 Data Fitting

After the sweeping step, each circular cross-section needs to be projected onto
the vessel surface as shown in Figure 10. First the interpolatory control points
(green points) are moved in the radial direction to the true surface. Then, the non-
interpolatory points (blue points) are placed at the intersection of the lines tangent to
the true surface passing through the two neighboring interpolatory points.

There are situations when the tangent lines do not intersect inside the fan region
defined in Figure 10b, or do not even intersect with each other when they are parallel.
This may occur when the cross-section template is not sufficiently fine to capture
features of the true surface, or when the true surface is noisy. This situation will
also result in an overlap in the geometry. In order to avoid overlap, we force the

Higher Order Branching
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n-branching Case 1

n-branching Case 2

n-branching Case 3

A combination of Case 1 and Case 2

Fig. 9. The n-branching templates of Case 1-3 and a combination of Case 1-2. (a) - path; (b) -
control mesh; (c) - solid NURBS; (d) - piecewise linear hex mesh. The Trifurcation geometry
is decomposed into 6 patches (Case 1), 5 patches (Case 2) or 7 patches (Case 3, a combination
of Case 1 and Case 2). Each patch is rendered with a different color.
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Ray 1

Ray 2

Ray 1

Ray 2
(b)(a) (c)

Fig. 10. One cross-section template is projected to the vessel surface. (a) Level-2-template
for one circular cross-section; (b) The red curve is the vessel curve. In the blue fan region,
the two tangent lines do not intersect with each other, and the magenta point is the calculated
control node; (c) The two neighboring green control nodes are adjusted. The green curve is
the constructed spline curve. Green control nodes are interpolatory points lying on the vessel
surface, and blue points are non-interpolatory.

non-interpolatory point to stay inside the fan region (the sector between two radial
rays) by placing it at the midpoint (indicated by the magenta color) of the segment
connecting the two interpolatory points. Finally, the location of the interpolatory
points is changed so as to preserve G1-continuity of the surface.

After projecting each cross-section to the vessel surface, we construct hexahedral
control meshes and generate solid NURBS for patient-specific vascular models. The
geometric error can be reduced by choosing a finer template for each cross-section.

5.4 Implications for Analysis of Blood Flow in Arteries

The proposed construction of a NURBS solid mesh for isogeometric analysis has the
following implications:

1. Parametric definition of the NURBS mesh allows one to refine the boundary
layer region near the arterial wall in order to accurately capture flow features.

2. In the case of a flow in a straight circular pipe driven by a constant pressure gra-
dient, NURBS basis of quadratic order gives rise to a point-wise exact solution
to the incompressible Navier-Stokes equation system. This also has implications
on the overall accuracy of the approach.

3. The choice of the parameterization of the cross-section template gives rise to
a singularity in the geometrical mapping at the center. This singularity does not
seem to affect the accuracy of the computational results. Other parameterizations
of the circular cross-section, containing multiple patches, are also possible.

6 Numerical Examples

In this section we present applications of the meshing pipeline to three patient-
specific vascular models: a model of a portion of the coronary tree, a model of the
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thoracic aorta, and a model of the abdominal aorta. Isogeometric analysis is then
used to compute blood flow in the models. In all cases, time-dependent, viscous,
incompressible Navier-Stokes equations were used as the blood model. The fluid
density and dynamic viscosity were chosen to be representative of blood flow. The
first example makes use of the Casson model for the dynamic viscosity while in
other examples viscosity was set to a constant value. All models are subjected to
a time-periodic inflow boundary condition, which simulates the input from a beat-
ing heart. The arterial wall is assumed rigid in the first example. Examples two and
three present fluid-structure interaction calculations in which the wall is assumed to
be elastic (see Bazilevs et al. [2] for the details of the mathematical formulation).
The rigid wall simulation was performed on a single processor, while the elastic wall
simulations were done in parallel.

A model of a portion of the coronary tree: Data for this model was obtained
from CT Angiography imaging data of a healthy male, over 55 years of age. Large
motions of the heart, as it supplies blood to the circulatory system, decreases the qual-
ity of the imaging data, and makes construction of patient-specific coronary models a
challenging task. Nevertheless, we managed to extract a portion of the coronary tree
for the purposes of creating an analysis suitable model. Results of the isocontouring
algorithm are shown in Figure 11a. Figures 11b-11d show the path, the control mesh,
and the solid NURBS model of the arterial segment. The model was used to study
drug delivery processes in arteries. The drug concentration in the blood is modeled
as a passive scalar governed by an unsteady advection-diffusion equation. Figure 11e
shows the isosurface of the drug concentration at 50% colored by the blood velocity
magnitude, revealing that the flow is unsteady, and has many complex features.

Thoracic aorta model: Data for this model was obtained from CT Angiography
imaging data of a healthy male over-30 volunteer. A patient-specific model of the
thoracic aorta was constructed by running through the meshing pipeline. An extra
branch, representing a left ventricular assist device (LVAD), was added to the arterial
model. Evaluation of LVADs, as well as other electromechanical devices used to
support proper blood circulation, is of great interest to the cardiovascular community.

12c. Figure 12d shows a result of the fluid-structure interaction simulation. Note that
the inlet and the three smaller outlet branches were extended for the purposes of
analysis.

Abdominal aorta: Data for this model was obtained from 64-slice CT angiog-
raphy of a healthy male over 55 years of age. Various stages of the meshing pipeline
are illustrated in Figure 1a-1f. Figure 1g shows a result of the fluid-structure simu-
lation. A computational study using a truncated geometrical model of this aorta was
performed in [2]. We used 85 seconds for path extraction and 8 seconds for control
mesh construction on a 64-bit dual-AMD 2GHz linux system, and 20 seconds for
solid NURBS generation on an Intel 3GHz linux system.

7 Conclusions and Future Work
We have developed a four-stage process to construct analysis suitable geometric
models from patient-specific vascular imaging data with a goal of using them in

The path, the control mesh, and the solid NURBS model are shown in Figures 12a-
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Fig. 11. Coronary artery. (a) - isocontouring results (two different view angles); (b) - path;
(c) - control mesh; (d) - solid NURBS model (20,824 elements); (e) - rigid wall simulation
results: isosurface of the drug concentration at 50% colored by the blood velocity magnitude
(cm/s).

isogeometric analysis of blood flow in arteries. We have focused on the NURBS
modeling, and did not treat other geometrical modeling technologies, such as A-
patches, T-splines, and subdivision. We would like to investigate these techniques in
the future.

We have successfully applied our method to three patient-specific examples,
which involve a model of a part of the coronary arterial tree, a thoracic aorta model,
and an abdominal aorta model. As part of the future work, we would like to apply
the techniques described here to modeling and analysis of the human heart.
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Fig. 12. Thoracic aorta. (a) - surface model and the path, a LVAD is inserted; (b) - control
mesh; (c) - solid NURBS (41,526 elements); (d) - fluid-structure interaction simulation re-
sults: contours of the arterial wall velocity (cm/s) during late diastole plotted on the current
configuration.
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